

MONITOR type MNH2

<Three in one = hydrant + water launcher + isolating pre-valve>
 <Dual reliability = possibility of use (closing from below)
 even when the regular closing (from above) is malfunctioning>
 <high flow rate ($K_v = 278 \text{ m}^3/\text{h}$) = less fire damage>

Basic technical characteristics:

Hydrant: type NH2

* Safe = compliant with the requirements of the standard EN 14384 = **CE**

* See "Procurement data" P1/2

* Flow: $K_v = 278 \text{ m}^3/\text{h}$, for $D_i = 2 \times 65$

* Moment of activation MOT<45Nm, (Class 1)

* Moment of breakage (at point 4.1) due to force F $M = 7500 \text{ Nm}$

* Foundation

* Weight ~ $(75 \div 92) \text{ daN}$ for $H_i (1350 \div 1850) \text{ mm}$

* Materials:

- hydrant body castings nodular cast,
- cap, and output couplings aluminium,
- sealants polypropylene/elastomers,
- pipe of body, spindle, and obturator seat stainless steel,

Advantage:

* Two ways of use = double reliability:

- closing with the **main valve (3)**, from above (**regular work**),
- closing with a **pre-valve (2)**, from below (**extraordinary work**),

* Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:

- the use of a hydrant even the main valve (3) is malfunction.
- that the other hydrants remain in operation even when the main valve (3) malfunction,
- automatic stop of water flow, in case of breakage (4.1) due to force F ,
- to omit a separate isolation valve in front of the hydrant,
- lower cost of construction and maintenance of the **hydrant network**,

* Large flow: ($K_v = 278 \text{ m}^3/\text{h}$, for $D_i = 2 \times 65$); less fire damage.

* Control valve (7) = great safety of the executor, prevention of hydrant freezing.

* Prevented damage to the supply pipeline = breakage at point 4.1, due to force F .

* Activation without additional tools, by turning the cap (5).

* Easy activation: (class 1, MOT<45Nm) longer service life.

* Possibility of blocking (6) unauthorized use.

* High reliability of closing: impermeability even after 1000 closings.

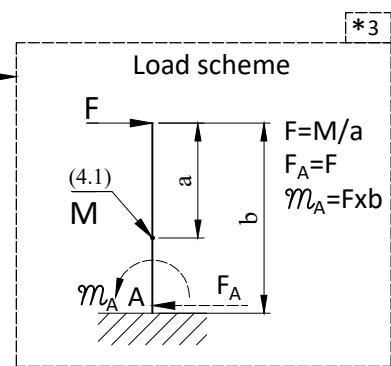
* Outlets tilted (25°) down, longer service life of fire hoses.

* The main valve seal is conical, self-flushing = dirt retention prevented = longer service life.

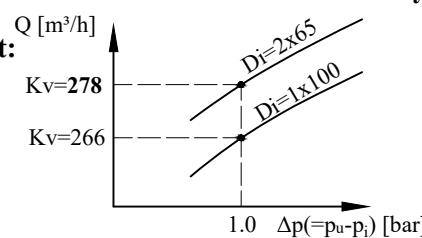
* Very easy hydrant maintenance:

- Replacing the main valve seal (3); without digging up the ground and without dismantling the body (4).
- The threaded part of the closure (3.1) is outside the flow of water, permanently lubricated, maintenance-free throughout its working life.
- Possibility (7) of checking the correctness of the drain and main valve.
- Repair of the drainage valve (10.1); from the outside, partial excavation, without dismantling the hydrant.

* Long warranty period 5 years.


* Probably the best, and the most economical hydrant available.

Water launcher:


type BV 1

type BV 2

- nominal openings ... $D_i = 65 \text{ mm}$ $D_i = 100 \text{ mm}$
- nominal pressure $PN = 16 \text{ bar}$
- choice of jet shape
- choice of jet direction vertically / horizontally
- fixing the selected jet position
- weight 40 daN 60 daN
- materials:
 - body steel,
 - nozzle aluminium,
 - sealants elastomers,

Flow of hydrant:

$$Q = K_v \times (1000 \Delta p / \rho)^{1/2}$$

- flow Q [m³/h]
- flow coefficient K_v [m³/h]
- pressure difference Δp [bar]
- water density ρ [kg/m³]

Documents accompanying the delivery of hydrant:

* Declaration of Performance,

* Instruction for safety work (installation, handling, inspection, maintenance, warranty)